Exploiting Emotional Information for Trust/Distrust Prediction
نویسندگان
چکیده
Trust and distrust networks are usually extremely sparse and the vast majority of the existing algorithms for trust/distrust prediction suffer from the data sparsity problem. In this paper, following the research from psychology and sociology, we envision that users’ emotions such as happiness and anger are strong indicators of trust/distrust relations. Meanwhile the popularity of social media encourages the increasing number of users to freely express their emotions; hence emotional information is pervasively available and usually denser than the trust and distrust relations. Therefore incorporating emotional information could have the potentials to alleviate the data sparsity in the problem of trust/distrust prediction. In this study, we investigate how to exploit emotional information for trust/distrust prediction. In particular, we provide a principled way to capture emotional information mathematically and propose a novel trust/distrust prediction framework ETD. Experimental results on the real-world social media dataset demonstrate the effectiveness of the proposed framework and the importance of emotional information in trust/distrust prediction.
منابع مشابه
Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust
In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among i...
متن کاملMatrix Factorization with Explicit Trust and Distrust Relationships
With the advent of online social networks, recommender systems have became crucial for the success of many online applications/services due to their significance role in tailoring these applications to user-specific needs or preferences. Despite their increasing popularity, in general recommender systems suffer from the data sparsity and the cold-start problems. To alleviate these issues, in re...
متن کاملGePuTTIS: General Purpose Transitive Trust Inference System for Social Networks
Recent work has explored the idea of using trust networks to supplement ratings information in community-based information systems, including algorithms to infer missing values in the trust network. Current trust inference algorithms sometimes make undesirable inferences because they do not fully use information about distrust and sometimes make inferences based on weak support. Further, many a...
متن کاملMulti-faceted trust and distrust prediction for recommender systems
Many trust-aware recommender systems have explored the value of explicit trust, which is specified by users with binary values and simply treated as a concept with a single aspect. However, in social science, trust is known as a complex term with multiple facets, which have not been well exploited in prior recommender systems. In this paper, we attempt to address this issue by proposing a (dis)...
متن کاملA graph-based comprehensive reputation model: Exploiting the social context of opinions to enhance trust in social commerce
Social commerce is a promising new paradigm of e-commerce. Given the open and dynamic nature of social media infrastructure, the governance structures of social commerce are usually realized through reputation mechanisms. However, the existing approaches to the prediction of trust in future interactions are based on personal observations and/or publicly shared information in social commerce app...
متن کامل